COW :: Seminars ::
METU Ceng On the Web
| print-view
seminars
filter:
list | browse
id : 819
type : Seminar
dateandtime : 2018-10-26 12:30:47
duration : 150 min.
Recommended duration for PhD thesis is 90 minutes, for other seminar types, it is 60 minutes. The duration specified here is used to reserve the room.
place : A105
Please check room availability from Room Scheduling page. You must use the same room name as used in the scheduling page if you want to automatically reserve the room.
departmental : yes
title : Domain Adaptation On Graphs By Transferring Spectral Properties Of Label Functions
author : Asst. Prof. Elif Vural
supervisors :
Supervisors field is applicable especially for a Thesis Defense
company : Electrical and Electronics Engineering Dept. Middle East Technical Univ.
country : Turkey
abstract : Traditional machine learning algorithms rely on the assumption that the labeled and unlabeled data samples at hand are drawn from the same distribution. However, in many practical data analysis problems, one may have many labeled training samples belonging to a data domain, while the unlabeled samples one would like to classify may have different statistics. Domain adaptation methods aim to make use of the label information that is sufficiently available in a source domain for inferring the label information in a target domain where labels are much more scarce. In many data analysis problems, the data conforms to a low-dimensional model, or it may even be described solely through the pairwise affinities between the data samples, such as in social or communication networks. Graph models provide very convenient tools for such problems. In this talk, we will discuss the problem of domain adaptation on graphs. We will begin with an overview of the recent field of graph signal processing; in particular, how classical frequency analysis techniques can be extended to graph domains where the irregularity of the domain is the main challenge. We will then consider the problem of estimating a label function on a target graph with very few available observations, given a source graph where label observations are more easily available. Assuming that the spectrum, i.e., the frequency content, of the label function has similar characteristics over the source and the target graphs, we will discuss how the spectral content of the label function can be learnt from the source graph, and transferred to the target graph for more accurate inference.
biography :
download slides :
[ ]check this to delete slides
slidesFilename :
slidesFilename is the name of downloadable file, and will be automatically filled when you upload a new file. You may change the name also.
links :
notificationSent : first
| top
2018-10-22 00:18:23, 0.018 secs
COW by: Ahmet Sacan