Ceng 111 – Fall 2015
Week 12b

Complexity and ADT

Credit: Some slides are from the “Invitation to Computer Science” book by G. M. Schneider, J. L. Gersting and some from the “Digital Design” book by M. M. Mano and M. D. Ciletti.
Another Example for Iteration

What happens when the circled part is written as follows:

Result = List
TAIL RECURSION VS. RECURSION VS. ITERATION
Consider these two implementations:

- The second implementation uses “tail recursion”.
- tail recursion → the result of the called function is not used by the calling function.

```python
def fact1(n):
    if n == 0:
        return 1
    else:
        return n * fact1(n-1)

def fact2(n):
    fact_helper(n, 1)

def fact_helper(n, r)
    if n == 0:
        print r
    else:
        fact_helper(n-1, n*r)
```
Tail recursion & iteration

Then, we can implement the tail-recursion version like on the right.

```python
def fact2(n):
    fact_helper(n, 1)

def fact_helper(n, r)
    if n == 0:
        print(r)
    else:
        fact_helper(n-1, n*r)
```

while n != 0
r = n * r
n = n - 1
More properly,

```python
def fact2(n):
    fact_helper(n, 1)

def fact_helper(n, r)
    if n == 0:
        print(r)
    else:
        fact_helper(n-1, n*r)
```

\[r = 1 \]

while \(n \neq 0 \)
\[r = n \times r \]
\[n = n - 1 \]
Recursion vs. Iteration

- Any recursive algorithm can be transformed into an iterative algorithm.
- The reverse is also true.
Recursion vs. Iteration

- Which one is better?
- Better in what way?

 - Resource-wise:
 1. Iteration without stacks
 2. Iteration with stacks
 3. Recursion

 - Implementation-wise:
 1. Recursion
 2. Iteration without stack
 3. Iteration with stack
TIME ANALYSIS OF ALGORITHMS
How do you compare these two algorithms?

Bubble sort

```python
def bubble_sort(List):
    length = len(List)
    changed = 1
    while changed:
        changed = 0
        i = 0
        while i < length-1:
            if List[i] > List[i+1]:
                (List[i], List[i+1]) = (List[i+1], List[i])
                changed = 1
            i += 1
```

Count sort

```python
def count_sort(A):
    # Assume that the numbers are in the range 1,...,k
    k = max(A)
    C = [0] * k

    # Count the numbers in A
    for x in A:
        C[x-1] += 1

    # Accumulate the counts in C
    i = 1
    while i < k:
        C[i] += C[i-1] i += 1

    # Place the numbers into correct locations
    B = [0] * len(A)
    for x in A:
        B[C[x-1]-1] = x C[x-1] -= 1

    return B
```
Analyzing Performance of Algorithms

How do you compare the performance of algorithms?

1. Implement them and count the time they take?
2. Count the number of main steps that affect the performance and depend on the size of the data.
Analyzing Algorithms

Consider these two algorithms for searching in a list:

1. Binary search vs Sequential search
2. Binary search: log N comparisons

```python
def binary_search(Item, List):
    '''List is sorted in increasing order'''
    length = len(List)
    middle = length/2
    if Item == List[middle]:
        return True
    if length == 1:
        return False
    if Item < List[middle]:
        return binary_search(Item, List[:middle:])
    else:
        return binary_search(Item, List[middle::])
```

```python
def is_member(Item, List):
    for x in List:
        if Item == x:
            return True
    return False
```
There are several measures for complexity.

A measure for complexity is basically a bound for the running time of an algorithm.

Look at $f(n) = 2n^2$

$f(n)$ is bounded by $3n^2$
Measuring complexity

Consider again \(f(n) = 2n^2 \)

There are several functions that can bound \(f(n) \):

1. \(3n^2, 4n^2, 6n^2, \ldots \)
2. \(n^3, 2n^3, 3n^3, \ldots \)
3. \(n^4, 2n^4, 3n^4, \ldots \)
4. \(\ldots \)
5. \(\ldots \)

In computational complexity, we are interested in the most “suitable” bounding function.
Big-o Notation; $O()$

- A function $f(n)$ is $O(g(n))$ iff
 - $|f(n)| \leq M|g(n)|$ for sufficiently large n, for a constant number $M > 0$.

- So, for $f(n) = 2n^2$ (or, $f(n) \in 2n^2$), $g(n) = n^2$.
 - In other words: $f(n) = O(n^2)$
 - But, it is also $O(n^3)$ and $O(n^4)$
 - We prefer the *smallest*.
 - For example:
 \[f(n) = 9\log n + 5(\log n)^3 + 3n^2 + 2n^3 \in O(n^3). \]
<table>
<thead>
<tr>
<th>Notation</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>constant</td>
<td>Determining if a number is even or odd; using a constant-size lookup table or hash table</td>
</tr>
<tr>
<td>$O(\log n)$</td>
<td>logarithmic</td>
<td>Finding an item in a sorted array with a binary search or a balanced search tree as well as all operations in a Binomial heap.</td>
</tr>
<tr>
<td>$O(n^c)$, $0 < c < 1$</td>
<td>fractional power</td>
<td>Searching in a kd-tree</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>linear</td>
<td>Finding an item in an unsorted list or a malformed tree (worst case) or in an unsorted array; Adding two n-bit integers by ripple carry.</td>
</tr>
<tr>
<td>$O(n \log n) = O(\log n!)$</td>
<td>linear, loglinear, or quasilinear</td>
<td>Performing a Fast Fourier transform; heapsort, quicksort (best and average case), or merge sort</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>quadratic</td>
<td>Multiplying two n-digit numbers by a simple algorithm; bubble sort (worst case or naive implementation), shell sort, quicksort (worst case), selection sort or insertion sort</td>
</tr>
<tr>
<td>$O(n^c)$, $c > 1$</td>
<td>polynomial or algebraic</td>
<td>Tree-adjoining grammar parsing; maximum matching for bipartite graphs</td>
</tr>
<tr>
<td>$L_n[\alpha, c]$, $0 < \alpha < 1 = e^{(c+o(1)) (\ln n)\alpha (\ln \ln n)^{1-\alpha}}$</td>
<td>L-notation or sub-exponential</td>
<td>Factoring a number using the quadratic sieve or number field sieve</td>
</tr>
<tr>
<td>$O(c^n)$, $c > 1$</td>
<td>exponential</td>
<td>Finding the (exact) solution to the traveling salesman problem using dynamic programming; determining if two logical statements are equivalent using brute-force search</td>
</tr>
<tr>
<td>$O(n!)$</td>
<td>factorial</td>
<td>Solving the traveling salesman problem via brute-force search, finding the determinant with expansion by minors.</td>
</tr>
</tbody>
</table>
Importance of Developing Efficient Algorithms

Sequential search vs Binary search

<table>
<thead>
<tr>
<th>Array size</th>
<th>No. of comparisons by seq. search</th>
<th>No. of comparisons by bin. search</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>128</td>
<td>8</td>
</tr>
<tr>
<td>1,048,576</td>
<td>1,048,576</td>
<td>21</td>
</tr>
<tr>
<td>~4.10^9</td>
<td>~4.10^9</td>
<td>33</td>
</tr>
</tbody>
</table>

Execution times for algorithms with the given time complexities:

<table>
<thead>
<tr>
<th>n</th>
<th>f(n)=n</th>
<th>nlgn</th>
<th>n^2</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.02 μs</td>
<td>0.086 μs</td>
<td>0.4 μs</td>
<td>1 ms</td>
</tr>
<tr>
<td>10^6</td>
<td>1 μs</td>
<td>19.93 ms</td>
<td>16.7 min</td>
<td>31.7 years</td>
</tr>
<tr>
<td>10^9</td>
<td>1 s</td>
<td>29.9 s</td>
<td>31.7 years</td>
<td>!!! centuries</td>
</tr>
</tbody>
</table>

Analysis of Algorithms, A. Yazici
Today

- Complexity
- Abstract Data Types
Other notations for computational complexity

Ω notation: \(f(n) = \Omega(g(n)) \):
- Lower boundary for \(f(n) \).
- \(f(n) \) is \(\Omega(g(n)) \) iff \(|f(n)| \geq M|g(n)| \), for sufficiently large \(n \), for some constant number \(M > 0 \).
- \(2n = \Omega(n) \)
- \(n^2 = \Omega(n^2) \)
Other notations for computational complexity

\(\Theta \) notation: \(f(n) = \Theta(g(n)) \):

- Lower and upper boundary for \(f(n) \).
- \(f(n) \) is \(\Theta(g(n)) \) iff \(f(n) \) is bounded by below and above by \(g(n) \):
 - \(M|g(n)| \geq |f(n)| \geq N|g(n)| \), for sufficiently large \(n \), for some constant numbers \(M,N > 0 \).
- \(2n = \Theta(n) \)
- \(n^2 = \Theta(n^2) \)
ABSTRACT DATA TYPES
Remember Stacks?

STACK

INITIAL

FINAL

Red moved to FINAL

Yellow moved to STACK

Green moved to FINAL

Yellowed moved from STACK to FINAL
Stacks

- **LIFO:**
 - Last In First Out

- We have seen it before (in the Shunting-Yard algorithm)

- Main operations:
 - Push
 - Pop
Stacks (cont’d)

- Operations:
 1. Push
 2. Pop
 3. Top/Peek
 - Get the top element without removing it
 4. Is-Empty
 - Checks whether the stack is empty
 5. Length
 - # of elements
Stacks in Python

Stack Operation

- Pop
- Push
- Top/Peak
- Is-Empty
- Length

Corresponding Python Op.

- L.pop()
- L.append(item)
- L[-1]
- L == []
- len(L)
Stacks in Python
(Example)

- Implement postfix implementation in Python using stacks.
 - Given a string like “3 4 + 5 7 + *”, evaluate and return the result.
Stacks in Python
(Example - Solution)

```python
def postfix_eval(String):
    ''' Example String: 3 4 + 5 6 * + '''
    Stack = []
    for token in String:
        if token != ' ':
            if '0' <= token <= '9':
                Stack.append(token)
            else:
                operand2 = Stack.pop()
                operand1 = Stack.pop()
                result = eval(operand1 + token + operand2)
                Stack.append(str(result))  # push operation
    print Stack
```

Exercise: Modify it so that it works on numbers bigger than 9.
Stacks: Formal definition

\[\text{push}(\text{item}, \text{stack}) \rightarrow \text{item} \circ \text{stack} \]

- \(\text{new}() \rightarrow \emptyset \)
- \(\text{popoff}(\xi \circ S) \rightarrow S \)
- \(\text{top}(\xi \circ S) \rightarrow \xi \)
- \(\text{isempty}(\emptyset) \rightarrow \text{TRUE} \)
- \(\text{isempty}(\xi \circ S) \rightarrow \text{FALSE} \)