
Chapter 8 – Software Testing 

Lecture 1 

1 Chapter 8 Software testing 



Topics covered 

 Development testing 

 Test-driven development 

 Release testing 

 User testing  

 

2 Chapter 8 Software testing 



Program testing 

 Testing is intended to show that a program does what it is 
intended to do and to discover program defects before it is put 
into use.  

 When you test software, you execute a program using 
artificial data.  

 You check the results of the test run for errors, anomalies or 
information about the program’s non-functional attributes.  

 Can reveal the presence of errors NOT their  
absence. 

 Testing is part of a more general verification and validation 
process, which also includes static validation techniques. 

 
Chapter 8 Software testing 3 



Program testing goals 

 To demonstrate to the developer and the customer that 
the software meets its requirements.  
 For custom software, this means that there should be at least 

one test for every requirement in the requirements document. 
For generic software products, it means that there should be 
tests for all of the system features, plus combinations of these 
features, that will be incorporated in the product release.   

 To discover situations in which the behavior of the 
software is incorrect, undesirable or does not conform to 
its specification.  
 Defect testing is concerned with rooting out undesirable system 

behavior such as system crashes, unwanted interactions with 
other systems, incorrect computations and data corruption. 

 4 Chapter 8 Software testing 



Validation and defect testing 

 The first goal leads to validation testing 
 You expect the system to perform correctly using a given set of 

test cases that reflect the system’s expected use.  

 The second goal leads to defect testing 
 The test cases are designed to expose defects. The test cases in 

defect testing can be deliberately obscure and need not reflect 
how the system is normally used.  

5 Chapter 8 Software testing 



Testing process goals 

 Validation testing 
 To demonstrate to the developer and the system customer that 

the software meets its requirements  
 A successful test shows that the system operates as intended. 

 Defect testing 
 To discover faults or defects in the software where its behaviour 

is incorrect or not in conformance with its specification  
 A successful test is a test that makes the system perform 

incorrectly and so exposes a defect in the system. 

6 Chapter 8 Software testing 



An input-output model of program testing  

7 Chapter 8 Software testing 



 Verification:  
 "Are we building the product right”. 

 The software should conform to its specification. 

 Validation: 
  "Are we building the right product”. 

 The software should do what the user really requires. 

Verification vs validation 

8 Chapter 8 Software testing 



V & V confidence 

 Aim of V & V is to establish confidence that the system is 
‘fit for purpose’. 

 Depends on system’s purpose, user expectations and 
marketing environment 
 Software purpose 

• The level of confidence depends on how critical the software is to 
an organisation. 

 User expectations 
• Users may have low expectations of certain kinds of software. 

 Marketing environment 
• Getting a product to market early may be more important than 

finding defects in the program. 

9 Chapter 8 Software testing 



 Software inspections Concerned with analysis of  
the static system representation to discover problems  
(static verification) 
 May be supplement by tool-based document and code 

analysis. 
 Discussed in Chapter 15. 

 Software testing Concerned with exercising and  
observing product behaviour (dynamic verification) 
 The system is executed with test data and its operational 

behaviour is observed. 

 

Inspections and testing 

10 Chapter 8 Software testing 



Inspections and testing  

11 Chapter 8 Software testing 



Software inspections 

 These involve people examining the source 
representation with the aim of discovering anomalies and 
defects. 

 Inspections not require execution of a system so may be 
used before implementation. 

 They may be applied to any representation of the system 
(requirements, design,configuration data, test data, etc.). 

 They have been shown to be an effective technique for 
discovering program errors. 

12 Chapter 8 Software testing 



Advantages of inspections 

 During testing, errors can mask (hide) other errors. 
Because inspection is a static process, you don’t have to 
be concerned with interactions between errors. 

 Incomplete versions of a system can be inspected 
without additional costs. If a program is incomplete, then 
you need to develop specialized test harnesses to test 
the parts that are available.  

 As well as searching for program defects, an inspection 
can also consider broader quality attributes of a 
program, such as compliance with standards, portability 
and maintainability.  

Chapter 8 Software testing 13 



Inspections and testing 

 Inspections and testing are complementary and not 
opposing verification techniques. 

 Both should be used during the V & V process. 

 Inspections can check conformance with a specification 
but not conformance with the customer’s real 
requirements. 

 Inspections cannot check non-functional characteristics 
such as performance, usability, etc. 

14 Chapter 8 Software testing 



A model of the software testing process  

15 Chapter 8 Software testing 



Stages of testing 

 Development testing, where the system is tested during 
development to discover bugs and defects.  

 Release testing, where a separate testing team test a 
complete version of the system before it is released to 
users.  

 User testing, where users or potential users of a system 
test the system in their own environment. 

Chapter 8 Software testing 16 



Development testing 

 Development testing includes all testing activities that 
are carried out by the team developing the system.  
 Unit testing, where individual program units or object classes are 

tested. Unit testing should focus on testing the functionality of 
objects or methods. 

 Component testing, where several individual units are integrated 
to create composite components. Component testing should 
focus on testing component interfaces. 

 System testing, where some or all of the components in a 
system are integrated and the system is tested as a whole. 
System testing should focus on testing component interactions. 

 

Chapter 8 Software testing 17 



Unit testing 

 Unit testing is the process of testing individual 
components in isolation. 

 It is a defect testing process. 

 Units may be: 
 Individual functions or methods within an object  
 Object classes with several attributes and methods  
 Composite components with defined interfaces used to access 

their functionality. 

18 Chapter 8 Software testing 



Object class testing 

 Complete test coverage of a class involves 
 Testing all operations associated with an object  
 Setting and interrogating all object attributes  
 Exercising the object in all possible states. 

 Inheritance makes it more difficult to design object class 
tests as the information to be tested is not localised. 

19 Chapter 8 Software testing 



The weather station object interface  

20 Chapter 8 Software testing 



Weather station testing 

 Need to define test cases for reportWeather, calibrate, 
test, startup and shutdown. 

 Using a state model, identify sequences of state 
transitions to be tested and the event sequences to 
cause these transitions 

 For example: 
 Shutdown -> Running-> Shutdown 
 Configuring-> Running-> Testing -> Transmitting -> Running 
 Running-> Collecting-> Running-> Summarizing -> Transmitting 

-> Running 
 

21 Chapter 8 Software testing 



Automated testing 

Whenever possible, unit testing should be automated so 
that tests are run and checked without manual 
intervention. 

 In automated unit testing, you make use of a test 
automation framework (such as JUnit) to write and run 
your program tests.  

 Unit testing frameworks provide generic test classes that 
you extend to create specific test cases. They can then 
run all of the tests that you have implemented and 
report, often through some GUI, on the success of 
otherwise of the tests.  

Chapter 8 Software testing 22 



Automated test components 

 A setup part, where you initialize the system with the test 
case, namely the inputs and expected outputs. 

 A call part, where you call the object or method to be 
tested. 

 An assertion part where you compare the result of the 
call with the expected result. If the assertion evaluates to 
true, the test has been successful  if false, then it has 
failed. 

 

Chapter 8 Software testing 23 



Unit test effectiveness 

 The test cases should show that, when used as 
expected, the component that you are testing does what 
it is supposed to do. 

 If there are defects in the component, these should be 
revealed by test cases.  

 This leads to 2 types of unit test case: 
 The first of these should reflect normal operation of a program 

and should show that the component works as expected.  
 The other kind of test case should be based on testing 

experience of where common problems arise. It should use 
abnormal inputs to check that these are properly processed and 
do not crash the component.  

24 Chapter 8 Software testing 



Testing strategies 

 Partition testing, where you identify groups of inputs that 
have common characteristics and should be processed 
in the same way.  
 You should choose tests from within each of these groups. 

 Guideline-based testing, where you use testing 
guidelines to choose test cases.  
 These guidelines reflect previous experience of the kinds of 

errors that programmers often make when developing 
components. 

 

Chapter 8 Software testing 25 



Partition testing 

 Input data and output results often fall into different 
classes where all members of a class are related. 

 Each of these classes is an equivalence partition or 
domain where the program behaves in an equivalent 
way for each class member. 

 Test cases should be chosen from each partition. 

26 Chapter 8 Software testing 



Equivalence partitioning  

27 Chapter 8 Software testing 



Equivalence partitions  

28 Chapter 8 Software testing 



Testing guidelines (sequences) 

 Test software with sequences which have only a single 
value. 

 Use sequences of different sizes in different tests. 

 Derive tests so that the first, middle and last elements of 
the sequence are accessed. 

 Test with sequences of zero length. 

29 Chapter 8 Software testing 



General testing guidelines 

 Choose inputs that force the system to generate all error 
messages  

 Design inputs that cause input buffers to overflow  

 Repeat the same input or series of inputs numerous 
times  

 Force invalid outputs to be generated  

 Force computation results to be too large or too small. 

 

30 Chapter 8 Software testing 



Key points 

 Testing can only show the presence of errors in a 
program. It cannot demonstrate that there are no 
remaining faults. 

 Development testing is the responsibility of the software 
development team. A separate team should be 
responsible for testing a system before it is released to 
customers.  

 Development testing includes unit testing, in which you 
test individual objects and methods  component testing 
in which you test related groups of objects  and system 
testing, in which you test partial or complete systems. 

 
Chapter 8 Software testing 31 



Chapter 8 – Software Testing 

Lecture 2 

32 Chapter 8 Software testing 



Component testing 

 Software components are often composite components 
that are made up of several interacting objects.  
 For example, in the weather station system, the reconfiguration 

component includes objects that deal with each aspect of the 
reconfiguration.  

 You access the functionality of these objects through the 
defined component interface.  

 Testing composite components should therefore focus 
on showing that the component interface behaves 
according to its specification.  
 You can assume that unit tests on the individual objects within 

the component have been completed.  
Chapter 8 Software testing 33 



Interface testing  

34 Chapter 8 Software testing 



Interface testing 

 Objectives are to detect faults due to interface errors or 
invalid assumptions about interfaces. 

 Interface types 
 Parameter interfaces Data passed from one method or 

procedure to another. 
 Shared memory interfaces Block of memory is shared between 

procedures or functions. 
 Procedural interfaces Sub-system encapsulates a set of 

procedures to be called by other sub-systems. 
 Message passing interfaces Sub-systems request services from 

other sub-systems 

 
35 Chapter 8 Software testing 



Interface errors 

 Interface misuse 
 A calling component calls another component and makes an 

error in its use of its interface e.g. parameters in the wrong order. 

 Interface misunderstanding 
 A calling component embeds assumptions about the behaviour 

of the called component which are incorrect. 

 Timing errors 
 The called and the calling component operate at different speeds 

and out-of-date information is accessed. 

36 Chapter 8 Software testing 



Interface testing guidelines 

 Design tests so that parameters to a called procedure 
are at the extreme ends of their ranges. 

 Always test pointer parameters with null pointers. 

 Design tests which cause the component to fail. 

 Use stress testing in message passing systems. 

 In shared memory systems, vary the order in which 
components are activated. 

37 Chapter 8 Software testing 



System testing 

 System testing during development involves integrating 
components to create a version of the system and then 
testing the integrated system. 

 The focus in system testing is testing the interactions 
between components.  

 System testing checks that components are compatible, 
interact correctly and transfer the right data at the right 
time across their interfaces.  

 System testing tests the emergent behaviour of a 
system.  

38 Chapter 8 Software testing 



System and component testing 

 During system testing, reusable components that have 
been separately developed and off-the-shelf systems 
may be integrated with newly developed components. 
The complete system is then tested. 

 Components developed by different team members or 
sub-teams may be integrated at this stage. System 
testing is a collective rather than an individual process.  
 In some companies, system testing may involve a separate 

testing team with no involvement from designers and 
programmers.  

Chapter 8 Software testing 39 



Use-case testing 

 The use-cases developed to identify system interactions 
can be used as a basis for system testing. 

 Each use case usually involves several system 
components so testing the use case forces these 
interactions to occur. 

 The sequence diagrams associated with the use case 
documents the components and interactions that are 
being tested. 

Chapter 8 Software testing 40 



Collect weather data sequence chart  

41 Chapter 8 Software testing 



Testing policies 

 Exhaustive system testing is impossible so testing 
policies which define the required system test coverage 
may be developed. 

 Examples of testing policies: 
 All system functions that are accessed through menus should be 

tested. 
 Combinations of functions (e.g. text formatting) that are 

accessed through the same menu must be tested. 
 Where user input is provided, all functions must be tested with 

both correct and incorrect input. 

 

Chapter 8 Software testing 42 



Test-driven development 

 Test-driven development (TDD) is an approach to 
program development in which you inter-leave testing 
and code development. 

 Tests are written before code and ‘passing’ the tests is 
the critical driver of development.  

 You develop code incrementally, along with a test for that 
increment. You don’t move on to the next increment until 
the code that you have developed passes its test.  

 TDD was introduced as part of agile methods such as 
Extreme Programming. However, it can also be used in 
plan-driven development processes.  

 43 Chapter 8 Software testing 



Test-driven development 

44 Chapter 8 Software testing 



TDD process activities 

 Start by identifying the increment of functionality that is 
required. This should normally be small and 
implementable in a few lines of code. 

Write a test for this functionality and implement this as 
an automated test.  

 Run the test, along with all other tests that have been 
implemented. Initially, you have not implemented the 
functionality so the new test will fail.  

 Implement the functionality and re-run the test.  

 Once all tests run successfully, you move on to 
implementing the next chunk of functionality. 

 45 Chapter 8 Software testing 



Benefits of test-driven development 

 Code coverage  
 Every code segment that you write has at least one associated 

test so all code written has at least one test. 

 Regression testing  
 A regression test suite is developed incrementally as a program 

is developed.  

 Simplified debugging  
 When a test fails, it should be obvious where the problem lies. 

The newly written code needs to be checked and modified.  

 System documentation  
 The tests themselves are a form of documentation that describe 

what the code should be doing.  

 46 Chapter 8 Software testing 



Regression testing 

 Regression testing is testing the system to check that 
changes have not ‘broken’ previously working code. 

 In a manual testing process, regression testing is 
expensive but, with automated testing, it is simple and 
straightforward. All tests are rerun every time a change is 
made to the program. 

 Tests must run ‘successfully’ before the change is 
committed. 

 

47 Chapter 8 Software testing 



Release testing 

 Release testing is the process of testing a particular release 
of a system that is intended for use outside of the 
development team.  

 The primary goal of the release testing process is to 
convince the supplier of the system that it is good enough 
for use. 
 Release testing, therefore, has to show that the system delivers its 

specified functionality, performance and dependability, and that it 
does not fail during normal use.  

 Release testing is usually a black-box testing process 
where tests are only derived from the system specification.  

 
48 Chapter 8 Software testing 



Release testing and system testing 

 Release testing is a form of system testing. 

 Important differences: 
 A separate team that has not been involved in the system 

development, should be responsible for release testing. 
 System testing by the development team should focus on 

discovering bugs in the system (defect testing). The objective of 
release testing is to check that the system meets its 
requirements and is good enough for external use (validation 
testing). 

 

49 Chapter 8 Software testing 



Requirements based testing 

 Requirements-based testing involves examining each 
requirement and developing a test or tests for it. 

MHC-PMS requirements: 
 If a patient is known to be allergic to any particular medication, 

then prescription of that medication shall result in a warning 
message being issued to the system user. 

 If a prescriber chooses to ignore an allergy warning, they shall 
provide a reason why this has been ignored. 
 

50 Chapter 8 Software testing 



Requirements tests 

 Set up a patient record with no known allergies. Prescribe medication for 
allergies that are known to exist. Check that a warning message is not 
issued by the system. 

 Set up a patient record with a known allergy. Prescribe the medication to 
that the patient is allergic to, and check that the warning is issued by the 
system. 

 Set up a patient record in which allergies to two or more drugs are recorded. 
Prescribe both of these drugs separately and check that the correct warning 
for each drug is issued. 

 Prescribe two drugs that the patient is allergic to. Check that two warnings 
are correctly issued. 

 Prescribe a drug that issues a warning and overrule that warning. Check 
that the system requires the user to provide information explaining why the 
warning was overruled.  

Chapter 8 Software testing 51 



Features tested by scenario 

 Authentication by logging on to the system. 

 Downloading and uploading of specified patient records 
to a laptop. 

 Home visit scheduling. 

 Encryption and decryption of patient records on a mobile 
device.  

 Record retrieval and modification. 

 Links with the drugs database that maintains side-effect 
information. 

 The system for call prompting. 

 Chapter 8 Software testing 52 



A usage scenario for the MHC-PMS  

Kate is a nurse who specializes in mental health care. One of her responsibilities 
is to visit patients at home to check that their treatment is effective and that they 
are not suffering from medication side -effects. 
On a day for home visits, Kate logs into the MHC-PMS and  uses it to print her 
schedule of home visits for that day, along with summary information about the 
patients to be visited. She requests that the records for these patients be 
downloaded to her laptop. She is prompted for her key phrase to encrypt the 
records on the laptop. 
One of the patients that she visits is Jim, who is being treated with medication for 
depression. Jim feels that the medication is helping him but believes that it has the 
side -effect of keeping him awake at night. Kate looks up Jim’s record and is 
prompted for her key phrase to decrypt the record. She checks the drug 
prescribed and queries its side effects. Sleeplessness is a known side effect so 
she notes the problem in Jim’s record and suggests that he visits the clinic to have 
his medication changed. He agrees so Kate enters a prompt to call him when she 
gets back to the clinic to make an appointment with a physician. She ends the 
consultation and the system re-encrypts Jim’s record. 
After, finishing her consultations, Kate returns to the clinic and uploads the records 
of patients visited to the database. The system generates a call list for Kate of 
those patients who she has to contact for follow-up information and make clinic 
appointments. 53 Chapter 8 Software testing 



Performance testing 

 Part of release testing may involve testing the emergent 
properties of a system, such as performance and 
reliability. 

 Tests should reflect the profile of use of the system. 

 Performance tests usually involve planning a series of 
tests where the load is steadily increased until the 
system performance becomes unacceptable. 

 Stress testing is a form of performance testing where the 
system is deliberately overloaded to test its failure 
behaviour. 

54 Chapter 8 Software testing 



User testing 

 User or customer testing is a stage in the testing process 
in which users or customers provide input and advice on 
system testing.  

 User testing is essential, even when comprehensive 
system and release testing have been carried out.  
 The reason for this is that influences from the user’s working 

environment have a major effect on the reliability, performance, 
usability and robustness of a system. These cannot be replicated 
in a testing environment. 

 

55 Chapter 8 Software testing 



Types of user testing 

 Alpha testing 
 Users of the software work with the development team to test the 

software at the developer’s site. 

 Beta testing 
 A release of the software is made available to users to allow 

them to experiment and to raise problems that they discover with 
the system developers. 

 Acceptance testing 
 Customers test a system to decide whether or not it is ready to 

be accepted from the system developers and deployed in the 
customer environment. Primarily for custom systems. 

 
56 Chapter 8 Software testing 



The acceptance testing process  

57 Chapter 8 Software testing 



Stages in the acceptance testing process 

 Define acceptance criteria 

 Plan acceptance testing 

 Derive acceptance tests 

 Run acceptance tests 

 Negotiate test results 

 Reject/accept system 

58 Chapter 8 Software testing 



Agile methods and acceptance testing 

 In agile methods, the user/customer is part of the 
development team and is responsible for making 
decisions on the acceptability of the system. 

 Tests are defined by the user/customer and are 
integrated with other tests in that they are run 
automatically when changes are made. 

 There is no separate acceptance testing process. 

Main problem here is whether or not the embedded user 
is ‘typical’ and can represent the interests of all system 
stakeholders. 

 
59 Chapter 8 Software testing 



Key points 

 When testing software, you should try to ‘break’ the software by 
using experience and guidelines to choose types of test case that 
have been effective in discovering defects in other systems. 

 Wherever possible, you should write automated tests. The tests are 
embedded in a program that can be run every time a change is 
made to a system. 

 Test-first development is an approach to development where tests 
are written before the code to be tested.  

 Scenario testing involves inventing a typical usage scenario and 
using this to derive test cases. 

 Acceptance testing is a user testing process where the aim is to 
decide if the software is good enough to be deployed and used in its 
operational environment. 

60 Chapter 8 Software testing 


	Chapter 8 – Software Testing
	Topics covered
	Program testing
	Program testing goals
	Validation and defect testing
	Testing process goals
	An input-output model of program testing 
	Verification vs validation
	V & V confidence
	Inspections and testing
	Inspections and testing 
	Software inspections
	Advantages of inspections
	Inspections and testing
	A model of the software testing process 
	Stages of testing
	Development testing
	Unit testing
	Object class testing
	The weather station object interface 
	Weather station testing
	Automated testing
	Automated test components
	Unit test effectiveness
	Testing strategies
	Partition testing
	Equivalence partitioning 
	Equivalence partitions 
	Testing guidelines (sequences)
	General testing guidelines
	Key points
	Chapter 8 – Software Testing
	Component testing
	Interface testing 
	Interface testing
	Interface errors
	Interface testing guidelines
	System testing
	System and component testing
	Use-case testing
	Collect weather data sequence chart 
	Testing policies
	Test-driven development
	Test-driven development
	TDD process activities
	Benefits of test-driven development
	Regression testing
	Release testing
	Release testing and system testing
	Requirements based testing
	Requirements tests
	Features tested by scenario
	A usage scenario for the MHC-PMS 
	Performance testing
	User testing
	Types of user testing
	The acceptance testing process 
	Stages in the acceptance testing process
	Agile methods and acceptance testing
	Key points

